
Useful information

Intro to Arduino IDE

Start

Verify: This checks your code for potential bugs and errors that might have accrued under coding.

Upload: Checks and uploads your code.

New: Opens a new project.

Opens: Open existing project.

Saves your project. (Verifying and uploading also saves the project.)

Adding port & board.

Go to tools.

Go to board.

Select the used board. (In this case Arduino genuine Uno)

Go to Port.

Select the port you are using. I usually appears automatically. If not try verifying code and or

switching USB port.

Examples: blink

Go to File.

Go to example.

Go to basic.

Click on blink.

Upload the sketch.

Wait until done compiling.

Congratulations you have successfully uploaded your code to the Arduino.

The structure of this course is widely based on the tutorials and information

available at https://www.arduino.cc/reference/en

https://www.arduino.cc/reference/en/

Bellow you will find some useful information that you can use as a reference to

your exercises.

Functions

Functions are more or less a small pre-written program that you can use in your

code. How do you write the code to output a voltage to a PIN on the arduino? The

answer is that someone has already done it for us and we can use it by calling that

function! There are a number of functions at our disposal. Some useful functions

for this course and it’s exercises are:

● digitalRead()

● digitalWrite()

● analogRead()

● analogWrite()

● delay()

● serialPrint()

● pinMode()

Loops, do this and keep doing it.

You will at some point need to know how to write simple loops. A loop is a block of

code that repeats itself. There are generally to kinds of loops, for-loops and while-

loops. A for loop is useful if you need to repeat a block of code a given number of

times. If you’re not sure how many times you need to loop through a block of code,

then it’s likely you will need a while loop instead. You can find all you need to know

about loops at Arduino’s reference page.

Here is a simple example of a for loop:

for (int i=0; i <= 255; i++){

 analogWrite(PWMpin, i);

 delay(10);

 }

We start by defining a variable i, then we set the loop to run for as long as the

variable i is less than the number 255. This is the condition and is the reason we

want a loop. If the condition isn’t met, the loop won’t run. Finally we set the loop to

increment i by one for every iteration. The loop starts with i=0 and runs the code. It

then increments the number i by one. So the second iteration will be i = 1 and so on.

Eventually the variable i will have a value of 256. When this happens our condition

is no longer true, and the loop will exit.

If that then do this..

How can you tell the program to do something, but only if a certain condition is

met? A common way of doing this is by the use of an if-statement. An if-statement

executes a block of code if it’s condition is met. If the condition isn’t true then the

program skips the block of code within the statement.

Here is an example of a simple if-statement.

if (myvalue == 1)

{

myvalue = 0;

 serialPrint(“my value was 1, but i changed it to 0”);

}

The if-statement contains the code we want to run if a certain condition is met. In

this case it’s if our variable myvariable is equal to 1. If the condition is true then the

code within the statement will run. If our value had been any other than 1, the code

within the statement wouldn’t have run.

The breadboard layout

The breadboard is your friend. It serves as a base to connect all your electronic

components in a simple and quick fashion, no soldering needed! The breadboard

also gives you a good overview of your circuit, so finding errors or adding more

components becomes easier. Let’s look at the layout of a breadboard.

Inside the breadboard there are columns and rows with conducting rails. For

example, all points of row 1 in section A are connected, but row 1 is not connected

to row 2. In section B. All points in column 1 are connected, but column 1 is not

connected to column 2.

The Arduino pinout overview.

So you need a PIN, eh? The image below will help you figure out which pin is which

on the board and how you use it in you code. The numbers 1-19 is the

corresponding pin number that you will use in your code. From the Blink example

we blinked an LED by setting pin 13 to HIGH. It should be easy to see where the pin

is located using the image. We can also get some useful information aside from pin

numbers, such as what pins support PMW, analog, or serve as power and ground.

