
Exercise 1.1: Blink

This example shows the simplest thing you can do with an

Arduino or Genuino to see physical output: blinking the on-board

LED light

Hardware Required

 Arduino UNO R3

 LED

 330 ohm resistor

Circuit

This exercise uses the built-in LED that most Arduino and

Genuino boards have. This LED is connected to a digital pin and

its number may vary from board to board. To make your life

easier, we have a constant that is specified in every board named

LED_BUILTIN.

If you want to light an external LED with this sketch, you need to

build this circuit, where you connect one end of the resistor to the

digital pin correspondent to the LED_BUILTIN constant. Connect

the long leg of the LED (the positive leg, called the anode) to the

other end of the resistor. Connect the short leg of the LED (the

negative leg, called the cathode) to the GND. What leg you

connect the resistor to does not matter, but polarity of the LED

will matter. This is because it limits current in one direction but

not in the other direction.

 In the diagram below we show an UNO board that has D13 as

the LED_BUILTIN value. The value of the resistor in series with

the LED may be of a different value than 330 ohm; the LED will

light up with values up to 1K ohm.

Schematic

Code

After you’ve built the circuit plug your Arduino board into your

computer. Start the Arduino Software (IDE) and load the code

from the menu File/Examples/01.Basics/Blink.

Exercise 1.2: Modified blink

This is a continuation on the last exercise in which you learned

how to make a LED blink with an Arduino och Genuino

Hardware Required
 Arduino UNO R3

 LEDs 1-5pcs

330 ohm resistor 1-5pcs

Circuit

This exercise uses the same circuit as the previous part. For more

information check exercise 1.1. You are free to expand on this

circuit with more LEDs and resistors if you’d like.

Code

In the blink code there’s a line looking like this:

pinMode(LED_BUILTIN, OUTPUT);

If we want to use our own pins to control LED lights we can use

the function in a similar way. Before the setup function begins (on

row 5 for example), we can define our pins like this: const int

ledPin = 2;

 const means that the pin will stay the same throughout our

code. int means that the variable will be a number, arduino

digital pins are defined as numbers. ledPin is the name we give

the variable, this is to make it easier later to know which pin is

used for what. We can use multiple pins to light LEDs like this:

const int ledPin = 2;

const int bestLed = 3;

const int secretPin3 = 4;

In the setup function we have to set their pinmode to output

before using them. Something like this can be used:

pinMode(ledPin, OUTPUT);

pinMode(bestLed, OUTPUT);

pinMode(secretPin3, OUTPUT);

It is important that these are inside the setup function.

It’s up to you to explore this exercise and create your own

blinking circuit. The goal is to get a sense on how the code works

and make your own patterns of blinking LEDs. You can use code

from the previous example and expand on it or try to write your

own.

Examples on how you can upgrade your circuit:

● Increasing or decreasing the delay to make the LED blink

faster or slower

● Defining more pins so you can have more LEDs

● Trying to make some kind of pattern

● Explore and have fun

Exercise 2.1: Potentiometer

In this exercise you will learn about analog pins and how to use a

variable resistor - a potentiometer to make a LED blink with

different frequencies.

Hardware Required
 Arduino UNO R3

 LED

330 ohm resistor

Potentiometer with knob

Circuit

This exercise will use some of the information you’ve learned

about LED lights but we also add a potentiometer. A

potentiometer is a resistor like the one we use for LED, but there

is one difference. We can change the resistance by rotating the

knob. With arduino we can apply a voltage to one side and read

the voltage on the middle pin. When we change the resistance

the voltage changes too. We can use this fact to get values from

0-1023. Why 1023? Arduinos analog values are 10-bit. We won’t
go into detail about it, but this gives you enough information to

look up what it means.

Back to the circuit. We can use these values to change our delay

for example. So when we turn the knob the LED blinks faster or

slower.

Code

The file for this exercise can be found under

File/Examples/03.Analog/AnalogInput. This code changes at what

rate the LED blinks.

Exercise 2.2: Potentiometer dim 1

In this exercise you will learn about analog pins and how to use a

variable resistor - a potentiometer to dim a LED.

Hardware Required
 Arduino UNO R3

 LED

330 ohm resistors

Potentiometer with knob

Circuit

This exercise uses a similar circuit as previous exercise but

instead of connecting the LED to digital pin 13 you connect it to

digital pin 3 which has PWM. This is used to dim a LED.

Code

For this exercise you will use the same code for reading the

potentiometer but instead of connecting the LED to digital pin 13

you should instead connect it to digital pin 3.

Pin 3 has PWM, which stands for pulse width modulation. This is

a method to change the voltage. Pin 3 and some other pins on

the arduino have it enabled which lets you decide the brightness

of the LED. To set different brightness we have to use something

different from the HIGH or LOW that the digitalwrite uses. The

function analogWrite() can do that. You can change the pin to

your own and use values from 0-255 using

analogWrite(yourpin,value). This is a bit lower than the

analogRead() function and instead of taking in values we are

pushing out values.

Instead of putting in our own value we can use the read value

from our potentiometer. Remember that you need to divide the

value from the potentiometer by 4 since this value goes from 0-

1023 instead of 0-255.

Exercise 2.3: Potentiometer dim 2

In this exercise you will have to create a circuit that uses a

potentiometer to simultaneously dim down one LED and brighten

one LED.

Hardware Required
 Arduino UNO R3

 LEDs 2pcs

330 ohm resistors 2pcs

Potentiometer with knob

Circuit

This exercise uses a similar circuit as previous exercise. For more

information and ideas on how this works check exercise 2.1 and

2.2.

Code

In this part you are only going to get some structure for the code

so you will have to write it yourself using the main concepts that

you learned in previous exercises. If you find it hard or if there is

something you don’t understand you can look it up at

https://www.arduino.cc/reference/en/ or ask one of the

instructors for this course.

https://www.arduino.cc/reference/en/

Here is some help on how the structure of the code might look

like. Comments marked with red are more challenging but makes

your code look cleaner and execute faster(though not noticeable

in this case).

Exercise 3.1: LDR fading
In this exercise you will have to create a circuit that uses another

type of resistor called LDR(Light Dependent

Resistor/photoresistor) to make a LED light up when it gets dark.

Hardware Required
 Arduino UNO R3

 LED

330 ohm resistor

1k ohm resistor

LDR

Circuit
In this exercise you need to create your own circuit, but to not

make it too hard we will give you some help. A voltage divider is

used to lower the total output voltage by letting some current

flow into ground through a second resistor. So how do you create

one? You connect two resistors in series(one after the other one).

In this case the LDR is one of the resistors. In the middle

between the resistors you connect an analog arduino pin so you

can read the value.

Goals:

1. Create a voltage divider

2. Read analog value from LDR

3. Dim LED when its bright

In this example you get a picture on how to connect the LDR and

resistor.

Code
In this part you have to write your own code with the basic

concepts. If you find it hard or if there is something you don’t
understand you can look it up at

https://www.arduino.cc/reference/en/ or ask one of the

instructors for this course.

One tip is to divide the values you get from the LDR so that it is

somewhere around 255 when it’s not covered. This way your LED

dim down with about the same increment as the LDR.

https://www.arduino.cc/reference/en/

Exercise 3.2: LDR switch

In this exercise you will have to create a circuit that uses LDR to

make a LED turn on when it is dark and turn off when it is bright.

Hardware Required
 Arduino UNO R3

 LED

330 ohm resistor

1k ohm resistor

LDR

Circuit

In this exercise you need to create your own circuit. The voltage

divider is the same for this as the previous exercise.

Goals:

1. Create a voltage divider

2. Read analog value from LDR

3. Turn off LED when it is bright

4. Turn on LED when it is dark

It is up to you to decide when it’s considered dark so don’t be

afraid to play around with the values. A real world example for

this circuit is an automatic night light. When it gets dark it turns

on and when it gets bright it turns off.

Code

In this part you have to write your own code with the basic

concepts. If you find it hard or if there is something you don’t
understand you can look it up at

https://www.arduino.cc/reference/en/ or ask one of the

instructors for this course.

https://www.arduino.cc/reference/en/

Exercise 3.3: LDR darkness

In this exercise you will have to create a circuit that uses a LDR

to make sequential LEDs light up depending on how dark it is.

Hardware Required
 Arduino UNO R3

 LEDs 3-5pcs

330 ohm resistors 3-5pcs

1k ohm resistor

LDR

Circuit

In this exercise you need to create your own circuit. The voltage

divider is the same for this as the previous exercise.

Goals:

1. Create a voltage divider

2. Read analog value from LDR

3. All LEDs should be off when it is bright

4. Depending on how dark it is, more LEDs should light up until

all LEDs are lit.

It is up to you to decide when it’s considered dark so don’t be

afraid to play around with the values. This is a simple way to

create a brightness sensor

Code

In this part you have to write your own code with the basic

concepts. If you find it hard or if there is something you don’t
understand you can look it up at

https://www.arduino.cc/reference/en/ or ask one of the

instructors for this course.

https://www.arduino.cc/reference/en/

Exercise 4.1: shift register
In this exercise you will learn what you can do when you run out

of pins on an arduino.

Hardware Required
 Arduino UNO R3

 LEDs 8pcs

330 ohm resistors 8pcs

Shift register

0.1µF capacitor

Button

Potentiometer

Circuit
In this exercise you will get help with the circuit and some of the

basic code to make the shift register work.

You can either:

1. Control the leds through serial monitor

2. Use a button to make leds light up the way you want

a. Make one successive led light up each time you press

the button. When you get to 8 turn all off or turn one

off successively.

b. Make a bit counter 1 = 1000000, 2 = 01000000, 3 =

11000000, and so on

3. Use a potentiometer to either make a pattern or to increase

the “bit counter” the more you turn the potentiometer.

Code

You will get some basic example code so that you know what to

do and how to use the shift register. It’s up to you to decide what

you want to try.You can find information about the arduino and

its libraries on https://www.arduino.cc/reference/en/ or ask one

of the instructors for this course.

Useful information
If you don’t know about binary numbers here’s some useful

information.

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

Each number used becomes a one and the rest becomes zeros.

You can use a decimal to binary converter like

https://www.rapidtables.com/convert/number/decimal-to-

binary.html if you don’t want to calculate the number.

The binary strings sent to the shift register is an 8 bit string so it

contains any combination of 8 bits. It is easier in practise, and

explained in more detail further down. To light up a LED(make a

pin HIGH) we send a one and to turn one off we send a zero.

Binary Decimal

0000 0001 1

0000 0010 2

0000 0011 3

0000 0100 4

https://www.arduino.cc/reference/en/
https://www.rapidtables.com/convert/number/decimal-to-binary.html
https://www.rapidtables.com/convert/number/decimal-to-binary.html

0000 0101 5

0000 0110 6

0000 0111 7

0000 1000 8

0000 1001 9

0000 1010 10

0000 1011 11

0000 1100 12

0000 1101 13

0000 1110 14

When using a shift register there’s some basics you need to

know. We use 3 pins on the arduino to control the 8

outputs/inputs of the shift register.

Clockpin:

Is used to tell a component like a shift register when a byte has

been sent to make sure it is saved. When we send the

information the clockpin is low and when a bit has been sent the

clockpin should be set to high to confirm that value.

Datapin:

Is used to send the data to the shift register, telling it which pins

that should go HIGH when the latchpin goes HIGH.

Latchpin

When this pin is enabled(set to high) the shift register sets ones

to HIGH and zeros to LOW for its outputs.

If we want to make it easy for ourself we can use the function

shiftOut(), more information on:

https://www.arduino.cc/reference/en/language/functions/advanc

ed-io/shiftout/

https://www.arduino.cc/reference/en/language/functions/advanced-io/shiftout/
https://www.arduino.cc/reference/en/language/functions/advanced-io/shiftout/

Exercise 4.2: more shift register
In this exercise you will learn what you can do when you run out

of pins on an arduino.

Hardware Required
 Arduino UNO R3

 LEDs 8pcs

330 ohm resistors 8pcs

Shift register

0.1µF capacitor

Button

Circuit
In this exercise you will use the circuit from the last exercise,

including a button.

The goal in this exercise is to make a stopwatch. If you want to

make it easy for yourself you can make a binary stopwatch using

8 leds. If you want to make it a challenge you can use a 7-

segment display.

Code
You will get some basic example code so that you know what to

do and how to use the shift register. It’s up to you to decide what

you want to try.You can find information about the arduino and

its libraries on https://www.arduino.cc/reference/en/ or ask one

of the instructors for this course.

Useful information

https://www.arduino.cc/reference/en/

 Here’s some help to get you started with the stopwatch. You can

use the function millis() to count the time from when the button

is pressed and then you can “push” out the values to the shift

register to be displayed on the LEDs or 7-segment.

https://www.arduino.cc/reference/en/language/functions/time/mi

llis/

https://www.arduino.cc/reference/en/language/functions/time/millis/
https://www.arduino.cc/reference/en/language/functions/time/millis/

Exercise 6: RGB LED ring
In this exercise you are going to program a LED-ring. To get you

started there is an example code at the course page. The aim of

this exercise is to learn how to install an external code library to

control the LED’s and create your own RGB-effects.

Hardware Required
 Arduino UNO R3

LED-strip

Breadboard

Cables

Circuit
Connect the LED-strip to your breadboard. From previous

exercises you should have an idea of how the LED-strip should be

connected. The LED-strip is marked with 5v for power, DIN for

the signal and GND for ground. The corresponding cables are red

for power, black for ground and yellow for data. Make sure the

arduino is powered off when making all connections.

Installing the library
A library is a collection of functions you may use for different

applications. For this application, you are going to need to

download and install the Neopixel library which is used to control

the type of LED’s that we’re using. In Arduino IDE go to

Sketch/Include -> library/Manage Libraries. Search for Adafruit

Neopixel and select the library named “Adafruit NeoPixel. Make

sure it’s the version description is “arduino library for controlling

single-wire-based LED pixels and strip”. Once installed you should

restart your Arduino IDE after installation.

https://xp-el.com/arduino-introduktionskurs/

Test your installation: Example code
If the installation was successful you should now be able to load

the example sketch “strandtest”. You will find it under

File/Examples/Adafruit Neopixel. Select it and upload it to your

board. If you have connected the wires correctly (Check your

data pin) the LED’s should light up.

What is RGB anyway?

RGB refers to the color channels used by the LED’s to create all

combinations of colors using only 3 primary colors - Red, Green

and Blue. It is basically your digital color pallette where you can

mix and match to get whatever color you like.

Remember the analog write value 255 we used in previous

exercises? If you look in the example code you should see

something like:

strip.Color(255, 0, 0)

The LED’s are controlled by setting the intensity of each color

channel. A value of 0 means the chanel is off, a value of 255

means the channel is at it’s max intensity. The small code block

above represents the color red, as the red channel is set to max

intensity and the green and blue channels are set to off.

(0,255,0) = Green

(0,0,255) = Blue

Experiment with the example code
Look around in the example codes and try and figure out the

different functions, rainbow, sweep etc. Change some color

values and try to make your own special effect.

TIP: make sure you set the number of LED’s in the code to be the

same as your connected LED-strip.

	Exercise 1.1: Blink
	Hardware Required
	Circuit
	Schematic
	Code

	Exercise 1.2: Modified blink
	Hardware Required
	Circuit
	Code

	Exercise 2.1: Potentiometer
	Hardware Required
	Circuit
	Code

	Exercise 2.2: Potentiometer dim 1
	Hardware Required
	Circuit
	Code

	Exercise 2.3: Potentiometer dim 2
	Hardware Required
	Circuit
	Code

	Exercise 3.1: LDR fading
	Hardware Required
	Circuit
	Code

	Exercise 3.2: LDR switch
	Hardware Required
	Circuit
	Code

	Exercise 3.3: LDR darkness
	Hardware Required
	Circuit
	Code

	Exercise 4.1: shift register
	Hardware Required
	Circuit
	Code
	Useful information

	Exercise 4.2: more shift register
	Hardware Required
	Circuit
	Code
	Useful information

	Exercise 6: RGB LED ring
	Hardware Required
	Circuit
	Installing the library
	Test your installation: Example code
	What is RGB anyway?
	Experiment with the example code

